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In order to estimate accurately the values of the elastic constants of a solid at high pressure and at an 
arbitrary temperature T from the ultrasonic measurements of the velocities of elastic waves propagated in 
solids as a function of pressure at the temperature T, it is necessary to know a priori the compressibility of the 
solid as a function of pressure at the temperature T. However, this latter infonnation is not always available. 
Hence, one has to make some kind of approximation to estimate the values of the elastic constants of solids 
at high pressure. The procedure developed here is more consistent than previous procedures. It requires 
a priori knowledge of the following values: the thermal expaDsion coefiicient, its temperature derivative, the 
specific heat at constant pressure of a solid at one atmosphere, and the travel-time measurements of the 
elastic waves propagated through the solid as a function of pressure at a temperature T or at more than one 
temperature. 

INTRODUCTION 

An investigator attempting to determine the variation 
of elastic constants of solids with pressure by ultrasonic 
measurements on new (or even well known) materials 
may find that the needed compressibility measurements 
are either tmavailable or if available are unreliable. 
Cook's method enables one to obtain an estin1ate of the 
values of the elastic constants of a solid at high pressure 
without a priori knowledge of the compressibility of the 
substance. l In developing the estimating procedure 
Cook assumed that the parameter t;,. ( P) [d. General 

otation and Analysis Section, Eq. (5)], remained 
constant with pressure. The value of t;,. (P) at any 
pressure P is given by its magnitude at one atmosphere. 
RuofF extended the results of Cook in the case of cubic 
solids by presenting an estimating procedure which 
permitted the parameter t;,.(P) to vary with pressure. 
This was done by expressing t;,. (P) in a power senes 
expansion given by (1) : 

t;,.(P) = t;,.(p= l )+p[at;,.(p) / ap]p_l 

higher pressures provided the ultrasonic measurements 
are made as a function of pressure at more than one 
temperature. This enables one to compute a more 
realistic estimate of elastic constants of cubic solids as a 
ftmction of pressure. 

The size, density, and elastic constants of a material 
specimen change with the application of pressure. The 
concomitant changes are observed in the value of the 
resonant or null frequencies of a standing wave and also 
in the measurement of travel-time for a pulse between 
Bat parallel faces of the specimen . The analysis presented 
in this paper refers to frequency measurements but is 
equally valid for the travel-time measurements of an 
elastic wave propagated in a medium. 

GENERAL NOTATION AND ANALYSIS 

By a solid we always refer to a cubic solid. Even 
though the quantities dealt with here refer to a pressure 
P and a temperature T, for sin1plicity the relevant 
suffix for the temperature is dropped from the general 
notation. 

+tr-[a2t;,.(p) / ar-]p_l+ ·· ·, (1) pep) 

where the quantities on the right-hand side of (1) are (3(P) 
evaluated at 1 atm. 

the density of the material at pressure 
P 
volume-expansion coefficien t of the 
material at presslU"e P 

Even so the lack of relevant data in the case of most Cp(P) 
materials limits one to the first derivative of t;,.(P). This 
is easily seen by differentiating t;,.(P) with respect to BS(P) 
pressure P. The present work develops an iterative 
procedure to estimate the values of the elastic constants B1'( P) 
of cubic solids at high presslU"e which di ffers from the one 
developed by Ruoff with respect to the assumptions x7'( P) 
regarding (i) the pressure derivative of the thermal 
volunle expansion coefficient at a temperature T, (ii) L(I, P) 
the temperature derivat.ive of the volume thermal 
expansion coefficient at a pressure P, and (iii) the 
estimation procedlU"e for t;,. (P). It is shown here that no ),. (P) 
assumptions regarding (i) and (ii) are necessary in 
order to estimate the elastic constants of cubic solids at 
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specific heat at constan t-pressure of the 
material at pressure P 
adiabatic bulk modulus of the material 
at pressme P 
isothermal bulk modulus of the ma­
terial at pressme P 
isothermal compressibili ty of the ma­
terial at pressure P 
the thickness of the specimen used in 
the measurement of the J th velocity 
mode at pressure P 
=L(J, P1) / L(J, P); P1<P; P= l = 
1 atm or 1 bar, only in the case of cubic 
material 
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V(J, P) 

T(J, P) 

F(I, J, P) 

N(I, J, P) 

r(I, J, P) 

IMP(J, P) 

K(I, J, P) 

V(l, P) 

V(2, P) 

V(3, P) 

the Jth velocity mode in the material 
at pressure P 
the travel-time for the Jth velocity 
mode at pressure P 
the Ith null frequency observed for the 
Jth velocity mode in the material at 
pressure P 
the number of t wavelengths in the 
specimen corresponding to F(I, J, P) 
the travel time in the specimen cor­
responding to F(I, J, P) 
mechanical impedance of quartz trans­
ducer for Jlh velocity mode at 
pressure P 
1M P(J, P)/ (mechanical impedance of 
the material corresponding to 1'(1, J, P) 
longitudinal velocity in the (100) 
direction at pressure P 
shear velocity in the (100) directtion a 
pressure P 
longitudinal velocity in the (110) 
direction at pressure P 

We need only know any three independent velocity 
modes in order to obtain the three elastic constants of a 
solid. In this paper the resonant frequencies measured 
as a function of pressure for the longitudinal modes of 
propagation in the (100) and (110) directions and the 
shear mode of propagation in the (100) direction have 
been used.3 

We also assume the following: 

(i) The temperature dependence of the volume, or 
the linear expansion coefficient at a temperature T and 
one atmosphere is known; 

(ii) the specific heat at temperature T and one 
atmosphere is known; and 

(iii) [a{3(p)/aT]p~[a/3(PI) /aT]Pl, where P?.PI, 
holds.4 

Then the procedure outlined below can be used to 
estimate the elastic constants of solids at higher 
pressures, without reference to a priori knowledge of the 
compressibility of the substance. 

The relation between the adiabatic bulk modulus and 
V2(J, P ) , (J = 1,3) , in a cubic solid may be written as 

BS(P) =tp(P)[4P(3, P)_4V2(2, P) - P(l, P)]. (2) 

Relation (1), expressed in terms of L(J, PI), T(J, P), 
A (P), and p(PI ), is given as relation (3) : 

BS(P) =tp(P1)A(P)[4V(3, PI) / r2(3, P) 

-4V(2, PI) / r2(2, P)-V(l, PI) / r2(1, P)], (3) 

where p(P)=A3(P)p(PI). By the definition of iso­
thermal bulk modulus we obtain 

BT(P) = - Vol. (p)[ap/ a VOl.(P)]T 

= p(p)[ap / ap(p) JT= tA(p)[ap /aA(p)]T. (4) 

And if 
I1(P) =/32(P)BS(P) T/ p(P) Cp(P) (S) 

where temperature T is in Kelvin, then 

Using Williams and Lamb's5 method of ultrasonic wave 
velocity measurements as modified by Colvin,6 transit 
time for the various wave propagations is obtained from 
the following relations: 

N(I, J, P)=Integer/[F(I, J, P) / I1F(I, J, P)] 

-O.S-K(I, J, P)}, (7) 

1'(1, J, P)=[N(I, J, P)+0.S]/ 2F(I, J, P) 

-[K(I, J, P) / 2]{[1/ F(R, J, P)]-[l/F(I, J, P)]l. 

(8) 

In the above expressions K(I, J, P) may be written as 

K(I, J, P) =IMP(J, P)/p(P) V(J, P) 

=IMP(J, P)T(J, P)/p(P1)A2(P) L(J, PI) 

(9) 

where 1M P(J, P) is the mechanical impedance of the 
transducer for the Jth velocity mode at pressure P. 

It is evident from relation (8) that if the measure­
ments are made near F(R, J, P) any error in the 
estimation of l' (I, J, P) due to inaccurate knowledge of 
K (I, J, P) becomes negligible. 

By integrating relation (4) we obtain 

Two lhings should be noted regarding the derivation of 
(10) from (4): (i) In the definition of isothermal bulk 
modulus at a pressure P, one could obtain its value by 
either decreasing or increasing the pressure slightly; 
and (li) when integrating (4) it must be remembered 
that it is implied in the definition of BT(P) that it 
remains constant over the range of integration PI to P. 
In expression (10) it is implied that the isothermal 
bulk modulus of a substance at pressure P has been ob­
tained by decreasing the pressure from P to Pl. The 
expression for A(P) as derived above differs from that 
obtained by following either Cook's or Ruoff's pro­
cedures. The expression for A(P) that will be obtained 
by following Cook's or Ruoff's procedure may be given 
by 

A(P)=l+[p(l)V(l)]-llP [l+I1(P)J 

X {[4/ r 2(3, P)J-[4/ r2(2, P)J-[1/T2(1, P)JI-1dP, 

(11) 
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where L(J, 1) = L(l), and [1 +t.(P) J is a constant in 
Cook's method and equals [1+6o(1)J but is a variab le 
in Ruoff's method. 

This expression (11) for A (P) is arrived at by 
expressing BT(P) in terms of p(l), L(1), r(f, P), and 
6o (P) with the help of Eqs. (3) and (6), and integrating 
(4) . H ence, A(P) in (11) can be determined if the 
value of 6o(P) can be estimated. Ruoff2 estimates the 
values of 60 (P) from the relation (1) by means of 
thermodynamics relations. For example, to evaluate 
[at.(p) / aPJT, we would rewrite BS(P) as 

BS(P) =p(P) [L2(P) / r 2(P)]' (12) 

Then t.(P) in (5) may be written as 

t. (P) =(J2(P) TL2(P) / [r2(P)Cp(P)], (13) 

and the logarithm derivative of 6o(P) yields 

1 (at. (P)) 2 (a{J(p)) 2 (aL (p) ) 
6o(P) ---;;p T = (3(P) ----ap T + L(P) ---;;p T 

2 (ar (P) ) 1 ( acp(p) ) (14) 
- rep) ----ap T - Cp(P) ap ; 

From thermodynamics, we know that 

and 

(
acp ( p ) ) = _ ~ {(a(3(p)) +(J2(P)}. (16) 

ap T pcP) aT p 

Hence, in the limit as P-t1, the expression (14) reduces 
to 

_ 1_ (a6o (p) ) ___ 2_ (axT(p) ) -~xT( l ) 
60 (1) ap 1' ,P-J - (J(1) aT P-J 3 

x [(a{3(p ) ) +(J2(1)]. ( 17) 
aT P-J 

Thus the magnitude oUhe first derivative of 6o(P) in the 
limit as P-l-l may be determined if the [axT(p) / aTjp_l, 
[a{3(p) / aT]p_l, (3(1), and Cp(l) are known and the 
value of 6o (P ) may be approximated at a pressure P by 

Similarly the higher derivatives of 6o(P) may be 
evaluated if the relevant thermodynamic data are 
available. 

The expression for A (P) in the new method, i.e., 
relation (10) described in this paper, is seen to di fIer 
from the earlier two works for two reasons, In their 
works, (i) A(P) is defined as L(J, l) / L(J, P), and 
(ii) 6o(P) is estimated by a different procedure, 

The quantities measured or known are p(l), L(f, 1), 
F(I, f, P) or r(f, P), P and T. For quartz trans­
ducers, 1M P(f, P) and F (R, f, P) can be obtained 
safely to 4000 bars and from room temperature to 900 K 
from the work of McSkimin and Andreatch.7 This in­
formation is not required if the ultrasonic measurements 
are of the travel times. (J(P) is usually known only as a 
function of temperature at 1 atm. However, the varia­
tion in the elastic constants with temperature at 
pressure P provides one with the temperature deriva­
tive of the isothermal compressibility. And from 
relation (15) one may obtain (3(P) at temperature T 
if (3(P) is known at one atmosphere and temperature T. 
In a normal substance where Pl~P, 

(19) 

holds, So, to assume that 

-[a{J(p) / ap}r-:::::{aXT(P1) / aTJpl_l (20) 

ensures that the value of 6o(P) obtained from (5) is 
underestimated, If ultrasonic measurements are made 
as a function of pressure at more than one temperature, 
a better estimate of [aXT(p) / aT]p may be obtained by 
simply incorporating [axT(p) / aTJp as an additional 
parameter to be iterated according to the scheme 
presented in Fig. 2. Where such information is un­
available (19) or (20) may be used. Similarly the 
computation of Cp(P) from relation (16) by assuming 

[a{3(p) /aTJ~[a{J(pl) /aTJpl_l (2 1) 

implies that the resulting values of Cp(P) from relation 
(16) will also be underestimated. However, the re­
sultant error in the estimated value of t.(P) due to the 
intrinsic underestimation of (3(P) and Cp(P) is likely 
to be small, up to 3- 4 kbar for most materials. Thus 
everything in expression (5) except BS(P) and pcP) 
are either known or may be approximated with reason­
able accuracy. 

The iterative procedure described below is that pre­
sented in Fig. 1, because we feel that the understanding 
of the procedure given in Fig. 2 will be facilitated by an 
understanding of the simpler procedure. Thus the 
iterative procedlue described assurnes that relations 
(20) and (21) hold. 

At P= 1 atm, all the quantities involved are known; 
no iteration is required to estimate the required elastic 
constants of solids. 

At the next higher pressure all the fundamental 
quantities in the relations (3), (5), (6), (7), (8), (9), 
and (10), exceptA(P) andK(I, f, P), are known. The 
procedure developed here involves a two stage iteration, 
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In er ness Prac.ure (P) <E(:-- - - -------, 

-!-
SET>' (P)=>' (Pr ee9dlnQ Pressure) 

,," Ie,' "e) $ 
Jlh veloe i ly mode ",,/~ _____ ----, 

$ 
nexl veloe l'y mode 

L(J , P) 

I1h Resonanl Fr equency <E<"--------_ 
,J, ne xl I or 

SET K 1,J,P,)= 1.0 

.-------~ 
SET K = \C. .... N(/,J, P) 

T(I , J,P) 

V (I,J, P) 

K'(I,J,P) 

IF K '* K IF K = K 

IF >.' (p) * >. (PrecedinQ 

When all vetaC JIY modes 

are catulaled 

as (P) 

D. (P) 

aT (p) 

X(P) 

Ilerol i on) t 
All olher 

parame l ers 
01 pressure P 

one at the level of pressure and the other on the Ith null 
frequency of the J th mode. We set )..,(P) =).., (Preceding 
P ressure) and K(I, J. P) = 1 and estimate N( I , J, P) 
and r (I , J , P) and K(I, J , P) . If the value of K(I, J , P) 
thus obtained agrees with the previously assigned 
value we compute N( I , J , P) for the (I+ l )th fre­
quency. If this value of K(I , J , P) does not agree with 
the previously assigned value these values of N (I, J , P) 
and r (I, J , P) are corrected by setting K(I , J, F) 
equal to the value obtained last, and iterating all over 
again. This' is repeated till two consecutive estimates of 
K(I , J , P) are the same. A similar computation is 
performed for all the velocity modes. By interpolation, 
from these r(I , J , P) 's one obtains values correspond­
ing to F(R, J ,P), each of which is calledr(J,P). 
These r (J , P)'s in turn are used to obtain V(J, P) 
which together with p(P) yield an estimate of BS(P) , 
b. (P ), BT(P), and finally A(P). If the value of )..,(P) 
thus obtained agrees with the previously assigned value, 

FIG. 1. A flow chart of the iterative pro­
cedure to estimate the variation in the 
elastic constant of a cubic solid with pres­
sure when the elastic wave velocities are 
obtained from the measurement of the 
resonant frequencies of a standing wave 
as a function of pressure at a temperature. 

J 

TABLE 1. The pressure derivative of the adiabatic and iso­
thermal bulk moduli of NaCl and KCl as obtained by Bartels 
and Schuele (B and S), as obtained in the present work (D) 
from the data of Bartels and Schuele. 

295°K 
Adiabatic 
Isothermal 

19S oK 
Adiabatic 
Isothermal 

295°K 
Adiabatic 
Isothermal 

195°K 
Adiabatic 
Isothermal 

Bulk 1I1odulus 

Band S D 

NaCl 

5.27 
5.35 

5.13 
5.20 

KCI 

5.34 
5.41 

5.34 
5.41 

5.33 
5.38 

5.18 
5.23 

5.36 
5.44 

5.36 
5.43 
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Incr.as. Prl.sur. (P) 
~ ~--------------~ Temperature (Tl ~L~ _______ --, 

~ next Temp.ratur. 
SET A(P, Tl= A (Preceding Pre .. ure, Tl 

r-------SE-T-A(-p-,T-l-=A~' -(P~',Tl ~ 

SET). (P, T) =). (preleding Pr ... ur., T) 

r-------------~~ 

FfG. 2. A flow chart of the iterative pro­
cedure to estimate the variation in the 
elastic constants of a cubic solid with 
pressure when the travel-time measure­
ments are made as a function of pres­
sure at more than one temperature. 
A(P, T) =rax (p, T ) / aT]p. 

SET>.(P,Tl=).'(P,Tf I p(P,Tl I 

Jth velocity mode at next velocity mode 
Preuur. P o~ Temp.ratur. T 

l L<J,P,TlJ 
V(J,P,Tl 

J, 

When all V.toCity mode. 
are calculated at Preuur. P 

and Tami,rOfur. 1 

B
S 

(P,Tl 

(a\(;,Tl) 
t.(P,Tl 

BT (P,Tl 

).' (P,Tl 

IF ).' (P Tl* ). (Preceding Iteration Tl J 
• I F),'(P,T~)'(P.Tl 

~~----------~,~--------~ 
When ali BT rp, Tl are 

corculat.d 0J:, ... ur. P 

LA' (P,Tlj 

IF A' (P Tl*A(Precedlng Iteration Tl t 

the estimates of BS(P) and BT(P) are correct. If this 
value of A(P) does not agree with the previously 
assigned value these BS(P) and BT(P) are corrected by 
means of setting A (P) equal to the value of A (P) 
obtained last and iterating all over agam. This is 
repeated till two consecutive estimates of A (P) are the 
same. Once this is known all other elastic constant 
parameters may be obtained. This iterative procedure 
is sketched diagramatically in Fig. 1. 

Table I displays the estimates of the pressure deriva­
tives of the adiabatic and isothermal bulk moduli of 

aCl and KCl at 295 0 and 195°K obtained from the 
above mentioned iterative procedure. The required 
travel time data as a function of pressure for this com­
putation were reconstructed from the pressure deriva­
tives of the travel-time for the various elastic wave 
velocities given in the paper of Bartels and Schuele.s 

IFA'(P, l=A(P,Tl 

I 
All other parameters at I 

Pr.s.ur. P and a II Temperatur •• 

All other ancillary data used were also taken from Ref. 
8. It may be seen that the estimates of the pressure 
derivatives of the bulk moduli of aCl and KCl as 
obtained in the present work for pressures ranging up 
to 1.7 kbar differ slightly from those obtained by Bartels 
and Schuele. However, such differences may become 
significant at higher pressures. It should be noted 
further that the iterative procedure outlined in the 
present work may be easily applied to determine the 
variation in the elastic constants of an isotropic solid. 

Figure 2 IS the schematic representation of the 
iteration procedure when the travel-time measurements 
are made as a function of pressure at more than one 
temperature. 

We are in the process of developing a variant of this 
iterative procedure designed to estimate the elastic 
constants of a non cubic solid as a function of pressure. 
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